scholarly journals Alkylphosphocholines: Effects on human leukemic cell lines and normal bone marrow cells

Author(s):  
S. M. Konstantinov ◽  
M. Topashka-Ancheva ◽  
A. Benner ◽  
M. R. Berger
Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 100-106 ◽  
Author(s):  
HN Steinberg ◽  
AS Tsiftsoglou ◽  
SH Robinson

Abstract The human leukemic cell lines K562 and HL-60 were cocultured with normal bone marrow (BM) cells. Coculture with 10(4) K562 or HL-60 cells results in 50% inhibition of normal CFU-E and BFU-E colony formation. However, when the same number of K562 and HL-60 cells is first treated for two to five days with agents that induce their differentiation, a gradual loss in their capacity to inhibit CFU-E and BFU-E colony formation is observed. The inhibitory material in K562 cells is soluble and present in conditioned medium from cultures of these cells. The degree to which leukemic cell suppression of CFU-E and BFU-E growth is reversed is correlated with the time of exposure to the inducing agent. Suppression is no longer evident after five days of prior treatment with inducers. In fact, up to a 90% stimulation of CFU-E growth is observed in cocultures with K562 cells that have been pretreated with 30 to 70 mumol/L hemin for five days. K562 cells treated with concentrations of hemin as low as 30 mumol/L demonstrate increased hemoglobin synthesis and grow normally, but no longer have an inhibitory effect on CFU-E growth. Hence, reversal of normal BM growth inhibition must be caused by the more differentiated state of the K562 cells and not by a decrease in the number of these cells with treatment. Thus, induction of differentiation in cultured leukemic cells not only alters the malignant cell phenotype but also permits improved growth of accompanying normal marrow progenitor cells. Both are desired effects of chemotherapy.


Cytometry ◽  
1982 ◽  
Vol 3 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Jerrold Fried ◽  
Jeffrey Doblin ◽  
Shigeru Takamoto ◽  
Amaury Perez ◽  
Herbert Hansen ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3439-3439
Author(s):  
Soren Lehmann ◽  
Sophie Raynaud ◽  
Julian C. Desmond ◽  
Phillip H. Koeffler

Abstract The 5q- syndrome is characterized by refractory anemia, normal or high platelet count, hypolobulated megakaryocytes, a good prognosis and a low risk of leukemic transformation. Although the CDR has been defined to a 1.5 Mb interval on the long arm on chromosome 5 (5q33.1), the molecular pathogenesis of the disease is still unknown. The CDR contains 39 known-genes of which 33 have been shown to be expressed in hematopoietic stem cells. In order to elucidate the molecular mechanisms behind the 5q- syndrome, we performed real-time quantitative PCR on these 33 genes. Samples from the bone marrow of 12 patients with a sole deletion of 5q and 14 patients with MDS with normal karyotype were initially analyzed. The genes that showed the most pronounced decrease in expression in the 5q- samples were: SLC36A1 (89% down-regulated compared to non 5q-), G3BP (79%), ATOX1 (76%), CSF1R (76%), RPS14 (74%), PDGFRB (73%), TNIP1 (72%), SPARC (71%), ANAX6 (69%), NSDT (66%) and TIGD (60%). SPARC expression was found to be higher in both types of MDS samples compared to normal bone marrow (n=18) as well as compared to seven leukemic cell lines (HL-60, NB4, HEL, KG1, K562, U937 and TP-1). ATOX1 expression was highly over-expressed (20- to 80-fold) in the leukemic cell lines and modestly but significantly higher in normal bone marrow compared to both types of MDS. For G3BP, the expression was similar in normal bone marrow compared to the non-5q- samples but 1- to 10-fold higher in the cell lines. RPS14 was down-regulated in both types of MDS compared to normal bone marrow and leukemic cell lines. Thus, we have identified the most significantly down-regulated genes within the CDR of the 5q- syndrome. Based on our expression data, their known biological functions and on publicly available tissue expression data, genes such as G3BP, ATOX1, TNIP1, RPS14 and CSF1R are interesting targets for further studies. Biological studies are currently being performed on these genes with respect to their role during hematopoiesis with special focus on erythropoiesis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 768-768 ◽  
Author(s):  
Yelena Kovtun ◽  
Gregory Jones ◽  
Charlene Audette ◽  
Lauren Harvey ◽  
Baudouin Gerard ◽  
...  

Abstract Current AML therapies are effective in a subset of patients, but often lead to prolonged myelosuppression. CD123 is an attractive AML target due to its elevated expression on AML compared to normal bone marrow cells. Still, severe myelosuppression and myeloablation have been reported in preclinical studies for some CD123-targeted therapies. Here, we present a novel ADC which selectively kills CD123-positive AML cells over normal bone marrow cells. A novel humanized anti-CD123 antibody with two engineered cysteines for payload conjugation was generated. Indolinobenzodiazepine dimers, termed IGNs, were chosen as payload molecules for the antibody due to their high potency against AML cells. The IGN dimers containing mono-imines alkylate DNA, whereas the di-imine containing IGNs can both alkylate and crosslink DNA. To select an optimal IGN payload, we compared the cytotoxicity of an ADC with a mono-imine IGN (A-ADC) to one with a di-imine IGN (C-ADC) on AML cells, as well as normal bone marrow cells in vitro. Potency of the ADCs was evaluated using AML cell lines that have CD123 levels similar to patient cells and carry markers of poor prognosis (FLT3-ITD , MDR1, EVI1, DNMT3A and TP53), as well as on samples from 11 AML patients. AML cells exposed to either ADC displayed markers of DNA damage, cell cycle arrest and apoptotic cell death by flow cytometry. Both ADCs were highly cytotoxic, generating IC50 values between 0.4 to 60 pM on the cell lines in WST-8 assays and killing 90 percent of progenitors from AML patients between 2 to 46 pM in CFU assays. The C-ADC was, on average, two-fold more active than the A-ADC. The cytotoxicity of both ADCs was CD123 dependent, since masking CD123 with a competing anti-CD123 antibody reduced the potency by more than 100-fold. Toxicity of the ADCs was assessed using bone marrow cells from a healthy human donor. The cells were exposed to the ADCs at 100 pM (a concentration highly potent against all AML samples) for 72 hours, and then markers of apoptosis were detected in different cell populations by flow cytometry. Neither ADC affected the viability of monocytes, lymphocytes and multipotential progenitors, consistent with low CD123 levels in these cell populations. In contrast, an apoptotic signal was detected in myeloid progenitors, the population with the highest CD123 level, following exposure to the C-ADC, but not to the A-ADC. The toxicity of the ADCs was also tested in CFU assays on bone marrow cells from 7 healthy donors, as the assays have been reported to predict clinical myelosuppression. Surprisingly, the C-ADC was, on average, 50-fold more cytotoxic to normal myeloid progenitors than the A-ADC (40 pM vs 2,000 pM IC90 values, respectively) (Figure 1). Finally, we compared CD123 independent toxicity of the ADCs in CD-1 mice. The C-ADC showed significantly reduced tolerability, and unlike the A-ADC, was associated with delayed toxicity manifested by weight loss 30 days after administration. Based on its potent yet highly selective toxicity to AML cells and more favorable tolerability profile, the A-ADC was selected for further study, and renamed as IMGN632. To compare IMGN632 to an ADC previously approved for the treatment of AML, the potency of IMGN632 and gemtuzumab ozogamicin (GO) was tested on bone marrow cells from 11 healthy donors and 17 AML patients, including 4 relapsed/refractory and 8 with strong multidrug resistance (Figure 1). Only 6 of 17 AML samples were sensitive to GO at concentrations that did not impact normal progenitors. In contrast, AML progenitors from all 17 patients were highly sensitive to IMGN632. Importantly, normal progenitors were only affected by IMGN632 at 150-fold higher concentrations. The pronounced difference between AML and normal progenitors in their sensitivity to IMGN632 likely reflects both higher CD123 levels on AML progenitors and the lower sensitivity of normal progenitors to the mono-imine IGN payload we observed in CFU assays. In conclusion, through use of a mono-imine IGN payload, IMGN632 demonstrated potent activity in all tested AML samples at concentrations far below levels that impact normal bone marrow cells, suggesting the potential for efficacy in AML patients in the absence of or with limited myelosuppression. These findings together with strong efficacy in multiple AML xenograft models (Kovtun et al., 21st EHA congress, 2016; Adams et al., 58th ASH annual meeting, 2016) support advancing IMGN632 into clinical trials. Disclosures Kovtun: ImmunoGen, Inc.: Employment. Jones:ImmunoGen, Inc.: Employment. Audette:ImmunoGen, Inc.: Employment. Harvey:ImmunoGen, Inc.: Employment. Gerard:ImmunoGen, Inc.: Employment. Wilhelm:ImmunoGen, Inc.: Employment. Bai:ImmunoGen, Inc.: Employment. Adams:ImmunoGen, Inc.: Employment. Goldmacher:ImmunoGen, Inc.: Employment. Chari:ImmunoGen: Employment. Chittenden:ImmunoGen, Inc.: Employment.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 100-106
Author(s):  
HN Steinberg ◽  
AS Tsiftsoglou ◽  
SH Robinson

The human leukemic cell lines K562 and HL-60 were cocultured with normal bone marrow (BM) cells. Coculture with 10(4) K562 or HL-60 cells results in 50% inhibition of normal CFU-E and BFU-E colony formation. However, when the same number of K562 and HL-60 cells is first treated for two to five days with agents that induce their differentiation, a gradual loss in their capacity to inhibit CFU-E and BFU-E colony formation is observed. The inhibitory material in K562 cells is soluble and present in conditioned medium from cultures of these cells. The degree to which leukemic cell suppression of CFU-E and BFU-E growth is reversed is correlated with the time of exposure to the inducing agent. Suppression is no longer evident after five days of prior treatment with inducers. In fact, up to a 90% stimulation of CFU-E growth is observed in cocultures with K562 cells that have been pretreated with 30 to 70 mumol/L hemin for five days. K562 cells treated with concentrations of hemin as low as 30 mumol/L demonstrate increased hemoglobin synthesis and grow normally, but no longer have an inhibitory effect on CFU-E growth. Hence, reversal of normal BM growth inhibition must be caused by the more differentiated state of the K562 cells and not by a decrease in the number of these cells with treatment. Thus, induction of differentiation in cultured leukemic cells not only alters the malignant cell phenotype but also permits improved growth of accompanying normal marrow progenitor cells. Both are desired effects of chemotherapy.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 737-743 ◽  
Author(s):  
DA Carson ◽  
DB Wasson ◽  
R Taetle ◽  
A Yu

2-Chlorodeoxyadenosine (CdA), an adenosine-deaminase-resistant purine deoxynucleoside, is markedly toxic toward human T-lymphoblastoid cell lines in vitro and is an effective agent against L1210 leukemia in vivo. The present studies have examined the toxicity, and in some cases, metabolism, of CdA in (1) multiple established human cell lines of varying phenotype, (2) leukemia and lymphoma cells taken directly from patients, (3) normal bone marrow cells, and (4) normal peripheral blood lymphocytes. Nanomolar concentrations of CdA blocked the proliferation of lymphoblastoid cell lines with a high ratio of deoxycytidine kinase to deoxynucleotidase. The drug had virtually no effect on the growth of cell lines derived from solid tissues. The CdA inhibited the spontaneous uptake of tritiated thymidine by many T and non-T, non-B acute lymphoblastic leukemia cell specimens at concentrations less than or equal to 5 nM. The same concentrations did not impair either thymidine uptake or granulocyte-monocyte colony formation by normal bone marrow cells. In common with deoxyadenosine, but unlike several other agents affecting purine and purine metabolism, CdA was lethal to resting normal T lymphocytes and to slowly dividing malignant T cells. In both resting and proliferating lymphocytes, the CdA was phosphorylated by deoxycytidine kinase and entered a rapidly turning over nucleotide pool. Dividing lymphocytes also incorporated abundant CdA into DNA. The selective toxicity of CdA toward both dividing and resting lymphocytes may render the drug useful as an immunosuppressive or antileukemic agent.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 285-292 ◽  
Author(s):  
FW Ruscetti ◽  
SJ Collins ◽  
AM Woods ◽  
RC Gallo

Abstract The recent development of two continuously proliferating human myeloid leukemic cell lines (HL-60 and KG-1) that response to CSA provides an opportunity for a detailed study of the interaction of CSA with leukemic myeloid cells. Here we report on the colony-forming ability of HL-60 and KG-1 over an extended culture life of the cells. Several different sources of human CSA of different stages of purity enhanced colony formation of these cells. CSA, obtained from conditioned media from an SV-40 transformed human trophoblast, was partially purified, and its activity for normal bone marrow copurified with the activity that stimulated HL-60 colony formation. Over 100 clones of HL-60 were developed and tested for their response to CSA. All responded to CSA by showing an increase in colony size and number. However, none of the colonies formed from any of the 100 clones differentiated in response to CSA despite the fact that many chemical can induce differentiation of HL-60. since HL-60 forms spontaneous colonies without the addition of any exogenous stimulating factors, HL-60 conditioned media and cell extracts were tested for the production by these cells of their own endogenous growth-promoting activity (such as a CSA-like molecule). No growth-promoting endogenous activity was found that stimulated normal bone marrow or HL-60 colony formation even after concentration and fractionation methods were employed. These experiments suggest that: (1) the effect of CSA markedly favors proliferation over differentiation in these cell lines; (2) CSA is unlikely to suppress growth of the age of the type of leukemic myeloid cells that HL-60 and KG-1 represent; and (3) if HL-60 cells produce their own growth- promoting factor it is not detectable in the media.


Sign in / Sign up

Export Citation Format

Share Document